Aer-O-Scope™, a Self-Propelled Pneumatic Colonoscope, is Superior to Conventional Colonoscopy in Polyp Detection

Gluck, Nathan1, Fishman, Sigal1, Melhem, Alaa2, Goldfarb, Sharon2, Halpern, Zamir1 and Santo, Erwin1

1Tel Aviv-Sourasky Medical Center, Tel Aviv, Israel, 2GI View, Ramat Gan, Israel

The Aer-O-Scope Colonoscope is a new disposable, self-propelled colonoscope with a novel optical system designed to maximize visualization of the entire colonic mucosa including behind haustral folds. This is achieved by using a circumferential (OMNI) 360° panoramic viewer allowing visualization both to the front and to the rear of the optical imaging capsule. A conventional front view is also provided. Both views are projected simultaneously on a single screen.

Methods

Two physicians underwent a short Aer-O-Scope colonoscopy training session and were then randomized to perform in tandem a total of 3 Aer-O-Scope colonoscopies and 2 colonoscopies to the depth of ligation on each of 12 swine. Aer-O-Scope colonoscopy was performed first in half of the animals. The sequence of all other procedures was randomized. Physicians were blinded to number, size, shape and color of beads. Pigs, physicians and scope tower were randomly alternated between procedure rooms to maintain physician blindness and objectivity. Viewed lesions were documented. Procedures videos were interpreted offline by 2 independent blinded physicians who could repeatedly review segments.

Results

Swine colons were surgically legated at a depth of 100-120cm and colored beads were sewn distally to the ligation (Figures 4, 5 & 6).

Safety and ease of operation

Training physicians to operate the Aer-O-Scope Colonoscope system and visualize pathologies using the unique visualization system was completed in under half a day. Intubation of the full length of the studied colonic segment was achieved in all cases with no complications.

Visualization

94.9% (259/273) of all implanted pathologies were visualized in real-time by the Aer-O-Scope Colonoscope as compared to 86.8% (158/182) with the conventional colonoscope (p=0.002). Miss rates of implanted pathologies <6 mm were 6.9% and 15.1%, respectively (p=0.031). The average agreement rate of Aer-O-Scope colonoscopy with conventional colonoscopy for implanted pathology detection or miss was 98.3%. These results demonstrate superiority of Aer-O-Scope Colonoscope over the conventional colonoscope for the visualization of implanted pathologies (Table 1 and Figure 7).

Adding offline video review results to live endoscopy results maintained a statistically significant advantage for Aer-O-Scope colonoscopy in detection of implanted pathologies of both size subgroups (see Table 2).

Table 1. Real-Time Results

<table>
<thead>
<tr>
<th></th>
<th>Aer-O-Scope</th>
<th>Conventional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>273</td>
<td>182</td>
</tr>
<tr>
<td>Beads<6 mm</td>
<td>154</td>
<td>106</td>
</tr>
<tr>
<td>Beads>6 mm</td>
<td>119</td>
<td>76</td>
</tr>
</tbody>
</table>

Table 2. Combined Results Real-Time and Off-Line

<table>
<thead>
<tr>
<th></th>
<th>Aer-O-Scope</th>
<th>Conventional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>546</td>
<td>364</td>
</tr>
<tr>
<td>Beads<6 mm</td>
<td>318</td>
<td>152</td>
</tr>
<tr>
<td>Beads>6 mm</td>
<td>228</td>
<td>152</td>
</tr>
</tbody>
</table>

Background

Conclusions

Aer-O-Scope colonoscopy is an easily mastered and safe system that proved equal or superior to conventional colonoscopy in detecting colonic pathologies, an advantage that was particularly striking in real-time detection of lesions of clinically significant dimensions.

Contact: nathang@tlvmc.gov.il